Effects on inadvertent endplate fracture following lateral cage placement on range of motion and indirect spine decompression in lumbar spine fusion constructs: A cadaveric study

نویسندگان

  • Brandon G. Santoni
  • Gerald E. Alexander
  • Aniruddh Nayak
  • Andres Cabezas
  • German A. Marulanda
  • Ryan Murtagh
  • Antonio E. Castellvi
چکیده

BACKGROUND The lateral transpsoas approach to interbody fusion is gaining popularity. Existing literature suggests that perioperative vertebra-related complications include endplate breach owing to aggressive enedplate preparation and poor bone quality. The acute effects of cage subsidence on stabilization and indirect decompression at the affected level are unknown. The purpose of this study was to compare the kinematics and radiographic metrics of indirect decompression in lumbar spines instrumented with laterally placed cages in the presence of inadvertent endplate fracture, which was determined radiographically, to specimens instrumented with lateral cages with intact endplates. METHODS Five levels in 5 specimens sustained endplate fracture during lateral cage implantation followed by supplementary fixation (pedicle screw/rod [PSR]: n = 1; anterolateral plate [ALP]: n = 4), as part of a larger laboratory-based study. Range of motion (ROM) in these specimens was compared with 13 instrumented specimens with intact endplates. All specimens were scanned using computed tomography (CT) in the intact, noninstrumented condition and after 2-level cage placement with internal fixation under a 400-N follower load. Changes in disc height, foraminal area, and canal area were measured and compared between specimens with intact endplates and fractured endplates. RESULTS Subsidence in the single PSR specimen and 4 ALP specimens was 6.5 mm and 4.3 ± 2.7 mm (range: 2.2-8.3 mm), respectively. ROM was increased in the PSR and ALP specimens with endplate fracture when compared with instrumented specimens with intact endplates. In 3 ALP specimens with endplate fracture, ROM in some motion planes increased relative to the intact, noninstrumented spine. These increases in ROM were paralleled by increase in cage translations during cyclic loading (up to 3.3 mm) and an unpredictable radiographic outcome with increases or decreases in posterior disc height, foraminal area, and canal area when compared with instrumented specimens with intact endplates. CONCLUSIONS Endplate fracture and cage subsidence noted radiographically intraoperatively or in the early postoperative period may be indicative of biomechanical instability at the affected level concomitant with a lack of neurologic decompression, which may require revision surgery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.

BACKGROUND CONTEXT The lateral transpsoas approach to interbody fusion is gaining popularity because of its minimally invasive nature and resultant indirect neurologic decompression. The acute biomechanical stability of the lateral approach to interbody fusion is dependent on the type of supplemental internal fixation used. The two-hole lateral plate (LP) has been approved for clinical use for ...

متن کامل

A cadaveric radiographic analysis on the effect of extreme lateral interbody fusion cage placement with supplementary internal fixation on indirect spine decompression.

STUDY DESIGN Cadaveric Biomechanical and Radiographic Analysis. OBJECTIVE The purpose of this study was to quantify the changes in intervertebral height and lateral and central recess areas afforded by lateral interbody fusion cages with 2 supplemental forms of internal fixation in cadaveric specimens. BACKGROUND DATA When conservative treatment for symptomatic lumbar stenosis fails, tradit...

متن کامل

Interbody device endplate engagement effects on motion segment biomechanics.

BACKGROUND CONTEXT Stand-alone nonbiologic interbody fusion devices for the lumbar spine have been used for interbody fusion since the early 1990s. However, most devices lack the stability found in clinically successful circumferential fusion constructs. Stability results from cage geometry and device/vertebral endplate interface integrity. To date, there has not been a published comparative bi...

متن کامل

Digitalized Design of Extraforaminal Lumbar Interbody Fusion: A Computer-Based Simulation and Cadaveric Study

PURPOSE This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. METHODS The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the...

متن کامل

Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.

STUDY DESIGN Controlled laboratory study. OBJECTIVE To evaluate the biomechanical characteristics of a new expandable interbody cage in single-segment posterior lumbar interbody fusion (PLIF) using cadaveric lumbar spines. SUMMARY OF BACKGROUND DATA One of the popular methods of treating lumbar spine pathologies involves a posterior lumbar interbody fusion using bilateral interbody nonexpan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013